Strong solutions to a nonlinear fluid structure interaction system

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Strong Solutions to a Fluid-Structure System

We study a coupled fluid-structure system. The structure corresponds to a part of the boundary of a domain containing an incompressible viscous fluid. The structure displacement is modeled by a damped beam equation. We prove the existence of strong solutions to our system for small data and the existence of local strong solutions for any initial data.

متن کامل

Weak Solutions for a Fluid-elastic Structure Interaction Model

The purpose of this paper is to study a model coupling an incompressible viscous fluid with an elastic structure in a bounded container. We prove the existence of weak solutions “à la Leray” as long as no collisions occur.

متن کامل

Fluid-structure interaction studies on marine propeller

Composite propellers offer high damping characteristics and corrosion resistance when compared with metal propellers. But the design of a hybrid composite propeller with the same strength of metal propeller is the critical task. For this purpose, the present paper focusses on fluid-structure interaction analysis of hybrid composite propeller with Carbon/Epoxy, R-Glass/Epoxy and S2-Glass/Epoxy t...

متن کامل

Dynamic Analysis on Nonlinear Fluid-Structure Interaction Forces of Rub-Impact Rotor System

Based on the coupling model of nonlinear oil-film force and nonlinear seal fluid force, a nonlinear dynamic model of rotor system with rub-impact fault is set up. The dynamic characteristics of the system were studied with numerical simulation and the effects of airflow excited force, rubbing gap and stiffness parameters on movement characteristics of the rotor were analyzed. The results indica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2009

ISSN: 0022-0396

DOI: 10.1016/j.jde.2009.06.005